(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
sum(cons(s(n), x), cons(m, y)) → sum(cons(n, x), cons(s(m), y))
sum(cons(0, x), y) → sum(x, y)
sum(nil, y) → y
weight(cons(n, cons(m, x))) → weight(sum(cons(n, cons(m, x)), cons(0, x)))
weight(cons(n, nil)) → n
Rewrite Strategy: INNERMOST
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
sum(cons(s(n), x), cons(m, y)) →+ sum(cons(n, x), cons(s(m), y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [n / s(n)].
The result substitution is [m / s(m)].
(2) BOUNDS(n^1, INF)